Charged Higgs Probes of Dark Bosons

K.C. Kong University of Kansas

Dark Interactions:
Perspectives from Theory and Experiment
Brookhaven National Laboratory
June 11-13, 2014

Charged Higgs + Zd

- Dark Z + 2HDM (type I)
- Charged Higgs: H+/H- (mW < mH+ < mtop)
- Neutral Higgses: h, H and A
- Dark Z: Zd of mass O(1-10) GeV (1, 2 and 5 GeV)

Vector Portal Parameter: ϵ

What are the physical effects of this mixing?

$$\mathcal{L} \supset -\frac{\epsilon}{2} X_{\mu\nu} \left(F^{\mu\nu} - t_W Z^{\mu\nu} \right)$$

- Two Cases:
 - I. Massive X vector: Dark Photon
 - I. Massive X vector with extra mass mixing: Dark Z
 - 2. Massless X vector: Paraphoton

Case I: Extra Mass Mixing [Davoudiasl, Lee, Marciano 2012]

Mass matrix with general mixing:

$$\mathcal{M}^2 = m_Z^2 \begin{pmatrix} m_x^2/m_Z^2 & -\epsilon_Z \\ -\epsilon_Z & 1 \end{pmatrix}$$
 with $\epsilon_Z = \begin{pmatrix} m_x \\ m_Z \end{pmatrix} \delta$

At low energies:

$$-\mathcal{L}_{eff} \supset \delta \frac{g_x g_Z}{m_x m_Z} j_x^{\mu} j_{Z\mu} + (1 + \delta^2) \frac{g_Z^2}{m_Z^2} j_Z^{\mu} j_{Z\mu}$$

Much less suppression!

From David's talk

Types of Dark Force

It may interact with DM, but SM particles have zero charges

Both models commonly assume the kinetic mixing of $U(1)_Y$ and $U(1)_{dark}$.

$$\mathcal{L}_{\rm kin} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} + \frac{1}{2} \frac{\varepsilon}{\cos \theta_W} B_{\mu\nu} Z'^{\mu\nu} - \frac{1}{4} Z'_{\mu\nu} Z'^{\mu\nu}$$
 [Holdom (1986)]
$$B_{\mu} = \cos \theta_W A_{\mu} - \sin \theta_W Z_{\mu}$$

(i) Popular Model: "Dark Photon" [Arkani-Hamed et al (2008); and others] mass ≈ O(1) GeV

coupling =
$$\varepsilon$$
×(Photon coupling)
 $\mathcal{L}_{\text{int}} = -\varepsilon e J_{em}^{\mu} Z_{\mu}'$

(ii) New Model: "Dark Z" [Davoudiasl, LEE, Marciano (2012)] mass ≈ O(1) GeV

coupling =
$$\varepsilon$$
×(Photon coupling) + ε_Z ×(Z coupling)
 $\mathcal{L}_{int} = -[\varepsilon e J_{em}^{\mu} + \varepsilon_Z (g/2\cos\theta_W) J_{NC}^{\mu}] Z_{\mu}'$

inherits properties of Z boson (including the parity violation)

Higgs structure matters

Model-dependence in coupling comes from how Z' gets mass (or Higgs sector).

- Dark Photon: (Example) additional Higgs singlet gives mass to Z' coupling = ε×(Photon coupling)
- Dark Z: (Example) additional Higgs doublet (+ singlet) gives mass to Z'
 coupling = ε×(Photon coupling) + ε_Z×(Z coupling)

(Example) Dark Photon case

: Z-Z' kinetic mixing is cancelled by Z-Z' mass mixing (which is "induced by kinetic mixing") at Leading order.

$$\mathcal{L}_{\rm int} \sim -eJ_{em}^{\mu}A_{\mu} - (g/2\cos\theta_W)J_{NC}^{\mu}Z_{\mu}$$
 (Kinetic mixing diagonalization) $\rightarrow -eJ_{em}^{\mu}[A_{\mu} + \varepsilon Z_{\mu}'] - (g/2\cos\theta_W)J_{NC}^{\mu}[Z_{\mu} + O(\varepsilon)Z_{\mu}']$ Z-Z' mass matrix diagonalization) $\rightarrow -eJ_{em}^{\mu}[A_{\mu} + \varepsilon Z_{\mu}'] - (g/2\cos\theta_W)J_{NC}^{\mu}Z_{\mu}$ (depends on Higgs sector) (for Higgs singlet)

Dark Force couplings depend on "Higgs sector".

From Hye-Sung's talk

Dark Zprime (Zd)

- A gauge boson of a new dark U(1).
- Light Zd with weak couplings to SM may address various anomalies such as positron data, muon g-2 etc.

$$\mathcal{L}_{\text{dark } Z} = -\left(\varepsilon e J_{em}^{\mu} + \varepsilon_{Z} g_{Z} J_{\text{NC}}^{\mu}\right) Z_{\mu}^{\prime}$$
$$= \bar{f} \left(g_{V} \gamma^{\mu} - g_{A} \gamma^{\mu} \gamma^{5}\right) f Z_{\mu}^{\prime}$$

 Zd has no direct couplings to SM. It couples to SM via kinetic mixing + extra mass mixing.

- $g_V = -\varepsilon e Q_f \varepsilon_Z g_Z \left(\frac{1}{2} T_{3f} Q_f \sin^2 \theta_W \right)$ $g_A = -\varepsilon_Z g_Z \left(\frac{1}{2} T_{3f} \right),$
- Exact couplings depend on details of model, especially on higgs sector.

 $|\varepsilon| \lesssim 10^{-2}$ $\varepsilon_Z \equiv \delta \frac{m_{Z'}}{m_{Z}}$ $|\delta| \lesssim 10^{-2}$

 It opens up exotic Higgs decays and provides interesting collider signatures!

Charged Higgs + Zd

- In 2HDM, FCNC constraints can be addressed by a new U(1), under which Higgs doublets carry different charges.
- Such a scenario may introduce tree-level HWZprime coupling.
- For a light "dark" Z model (with mass < 10 GeV), charged Higgs may decay dominantly into W + Zd (for mass < mtop)
- For a Zd with O(1) GeV mass, BR into leptons is large.
- At LHC, such a Zd can be boosted, and two leptons from Zd decay appear as a Lepton-Jet.

Davoudiasl, Marciano, Ramos, Sher, 2014 Kong, Lee, Park, 2014

Production of H+/H-

- For tan(beta) ~10, single production cross section ($bg \rightarrow tH^-$) of charged Higgs (160 GeV) is ~ 20 (100) fb at 8 (14) TeV.
- DY provides another production. For 100 < MH < 175, DY cross section changes 50 fb to 5 fb at 8 TeV. At 14 TeV, cross sections are twice larger.
- Associated tH production is a factor of 4-10 larger than DY cross section for a similar mass. DY only becomes comparable for tan(beta)
 20 but it has negligible model dependence.
- H+H- production via top quark production is subdominant to DY over most of the relevant parameter space but single H+ (or H-) production from ttbar is quite dominant.

Charged Higgs (H+) decay

- For MH+ < mtop, dominant decays are into cs and tau-neutrino in usual 2HDM.
- For (i), the lighter Higgs boson is SM-like. H+W-Zd coupling is small but H+ Br to WZd can be large.
- For (ii), the charged Higgs can decay to the lighter Higgs. In the decoupling limit (alpha=pi/2 or -pi/2), the heavier Higgs is SM-like.
- Br(h -> Zd Zd) ~ 1, since h does not couple to SM fermions. (Type I)
- In both (i) and (ii), over much of parameter space, Y~1. Whether (i) or (ii) dominates depends on the mass of Higgs boson, especially mass of non-SM Higgs.
- In principle, $t \to qZ'$ (with q = u, c) is possible.

$$\Gamma(H^+ \to \nu \tau^+) \simeq \frac{m_{H^{\pm}}}{8\pi v^2} \frac{m_{\tau}^2}{\tan^2 \beta}$$

$$\Gamma(H^{\pm} \to WZ') \simeq \frac{m_{H^{\pm}}^3}{16\pi v^2} \left(\sin\beta\cos\beta_d\right)^2 \left(1 - \frac{m_W^2}{m_{H^{\pm}}^2}\right)^3$$

$$\Gamma(H^{\pm} \to Wh) \simeq \frac{\sin^2 \beta}{16\pi v^2} \frac{1}{m_{H^{\pm}}^3} \lambda^{3/2}(m_{H^{\pm}}^2, m_W^2, m_h^2)$$

$$Y \equiv \mathrm{BR}(H^{\pm} \to W + Z'\mathrm{s}),$$

- (i) $t \to bH^+ \to bW + Z'$ (through $H^{\pm}W^{\mp}Z'$ coupling),
- (ii) $t \to bH^+ \to bW + h \to bW + Z'Z'$ (with a light non-SM Higgs boson h),
- (iii) $t \to bW^* \to bW + Z'$ (through Z'WW coupling),
- (iv) $t \to bW^* \to bW + h \to bW + Z'Z'$ (through hWW coupling).

Zd Production

- For an invisibly decaying Zd, the search will likely be more challenging and depend on how well the missing energy signal can be separated from the background.
- An approximate bound on this mode can be inferred from ATLAS/CMS bounds on stop production followed by stop decay to top + neutralino of mass ~50 GeV, LHC bounds are ~ 2pb for a stop mass 250 GeV, which may constrain only a lower mass of H+. More detailed analysis or data from run II will constrain the parameter space.
- We will consider Zd decay into dilepton.

Top decay into Zd via H+

$$BR(t \to bH^{+}) \simeq \frac{\Gamma_{t \to bH^{+}}}{\Gamma_{t \to bW} + \Gamma_{t \to bH^{+}}}$$

$$\approx \left(\frac{m_{t}^{2} - m_{H^{\pm}}^{2}}{m_{t}^{2} - m_{W}^{2}}\right)^{2} \frac{1/\tan^{2}\beta}{1 + 2m_{W}^{2}/m_{t}^{2}}$$

For numerical analysis, we focus on

(i)
$$t \to bH^+ \to bW + Z'$$

(through $H^{\pm}W^{\mp}Z'$ coupling).

- Higher BR for lower tan(beta).
- Current limit allows O(1)% branching fraction.

Production of Zd

• Zd production in DY ($pp \rightarrow H^+H^- \rightarrow WW + Z'Z'$) and top pair production,

$$\sigma(pp \to bW \, \bar{b}W + Z's) \simeq \sigma_{t\bar{t}} \, 2X \quad X = \text{BR}(t \to bH^+) \, Y$$

- The band indicates BR(H+ -> W Zd)=0.5-1 range. $Y = BR(H^{\pm} \rightarrow WZ') = 0.5 1$
- Cross section at 14 TeV is about 4 times larger than that at 8 TeV.
- For a low tan(beta), top quark production is important.

Lepton Pair from Zd decay

- Light Zd cannot be reconstructed with the usual lepton tagging.
- $\Delta R \simeq \Delta \eta$ since $\Delta \phi$ is peaked at 0.

$$m_{\ell^+\ell^-}^2 = 2P_{T_1}P_{T_2} (\cosh \Delta \eta - 1)$$

 $\simeq 2P_{T_1}P_{T_2} (\cosh \Delta R - 1)$

For a moderate lepton tagging efficiency, most analysis require

$$P_{T(e)}^{\min} = 10 \text{ GeV}, \quad P_{T(\mu)}^{\min} = 5 \text{ GeV}.$$

• With an isolation requirement of $\Delta R > 0.3$,

$$m_{ee} > \sqrt{2P_{T(e)}^{\min}P_{T(e)}^{\min}(\cosh(0.3) - 1)} \simeq 3 \text{ GeV},$$

 $m_{\mu\mu} > \sqrt{2P_{T(\mu)}^{\min}P_{T(\mu)}^{\min}(\cosh(0.3) - 1)} \simeq 1.5 \text{ GeV}.$

 Conventional analysis would miss Zd lighter than 3 (1.5) GeV in the dielectron (dimuon) channel.

Lepton Pair from Zd decay

Light Zd cannot be reconstructed with the usual lepton tagging.

P_{T2} distribution of a lepton pair from Z'

1.4

$$M_{H^c}=100, M_{Z^c}=1$$
 $M_{H^c}=100, M_{Z^c}=5$
 $M_{H^c}=140, M_{Z^$

$$E_{\ell}^{(\text{max})} = \frac{m_{Z'}}{2} e^{(\eta_{Z'} + \eta_{H^{\pm}})} \qquad P_{T}^{\text{peak}} \equiv \frac{1}{2} E_{\ell}^{(\text{cusp})}$$

$$E_{\ell}^{(\text{cusp})} \equiv \frac{m_{Z'}}{2} e^{|\eta_{Z'} - \eta_{H^{\pm}}|}$$

Kong, Lee, Park, 2014

Improved Lepton Selection

- 1. At least two same flavor leptons with $P_T > 10 \text{ GeV}$ (electron), 5 GeV (muon) and in a cone of $\Delta R < 0.1$.
- 2. Isolation: Hadronic and leptonic isolation of $\sum P_T < 3$ GeV in $0.1 < \Delta R < 0.4$.
- 3. Invariant mass cut on lepton-jet: $|m_{\rm LJ} m_{Z'}| < 0.2 \times m_{Z'}$.

- For our study, we use FeynRules, MG4, PYTHIA, and Delphes.
- 60%-75% of b-tagging efficiency, depending on PT and ETA, following CMS CSVM tagging.
- We make minor changes in the Delphes module to include the non-zero muon mass in the original routine.
- We add the lepton-jet class in the Delphes, following above definitions.
- Use anti-kt with DeltaR < 0.5. Require at least one b-tagged jet and above LJ conditions.
- For numerical study, we use ~X=0.001~ and $~{
 m BR}(Z'
 ightarrow \ell^+\ell^-)=0.2$

$$\sigma(pp \to bW \, \bar{b}W + Z's) \simeq \sigma_{t\bar{t}} \, 2X \quad X = \text{BR}(t \to bH^+) \, Y$$

Signal and Backgrounds

- Dilepton channel
 - pt < 20 GeV, eta < 2.5 for electron and pt > 20 GeV, eta < 2.1 for muon
 - veto OSSF with mll < 20 GeV and | MZd mll | < 15 GeV, met > 40 GeV
 - at least two jets with pt > 30 GeV, eta < 2.5
- Semileptonic channel
 - pt > 30 GeV, eta < 2.5 for electron and pt > 26 GeV, eta < 2.1 for muon
 - at least four jets with pt1, pt2 > 45 GeV, pt3, pt4 > 35 GeV.
- Hadronic channel
 - at least 6 jets, pt > 30 GeV, eta < 2.4.
 - CMS requires pt1, pt2, pt3, pt4 > 60 GeV, pt5 > 50 GeV, pt6 > 30 GeV, and additional
 constrains for two b-tagged jets and a kinematic for mass reconstruction of tops and W.
- Backgrounds: ttbar + dilepton with Kbknd=2. (Ksig=1.74 (1.84) at 8 (14) TeV.)

LJ Tagging Efficiencies

LHC	$m_{Z'}$	$\epsilon_{\rm LJ}(\epsilon_{\rm (LJ+CMS)})$ [%] for signal			Mass range of	$\sigma_{ m bkg}^{ m LO}$	$\epsilon_{\mathrm{LJ}}(\epsilon_{\mathrm{(LJ+CMS)}})$ [%]
[TeV]	[GeV]	$m_{H^{\pm}} = 100 \text{ GeV}$	$m_{H^{\pm}} = 140 \text{ GeV}$	$m_{H^{\pm}} = 160 \text{ GeV}$	$m_{\ell^+\ell^-} [{\rm GeV}]$	[pb]	for background
8	1	16.37 (4.18/2.07)	46.77 (10.96/4.51)	52.04 (9.40/3.04)	0.5 - 1.5	0.617	$2.05 \ (0.61/0.28)$
	2	$3.07 \ (0.92/0.43)$	31.01 (7.64/3.13)	40.74 (7.57/2.50)	1.0 - 3.0	0.157	$0.53 \ (0.19/0.08)$
	5	$0.02 \ (0.00/0.00)$	$2.24 \ (0.64/0.26)$	5.55 (1.25/0.48)	3.0 - 5.0	0.0175	$0.32 \ (0.10/0.04)$
14	1	16.38 (4.28/2.02)	44.28 (10.73/4.37)	50.54 (9.44/3.13)	0.5 - 1.5	2.536	$2.18 \ (0.60/0.30)$
	2	3.33 (1.11/0.49)	$29.73 \ (7.52/3.13)$	$39.31 \ (7.64/2.51)$	1.0 - 3.0	0.640	$0.57 \ (0.23/0.11)$
	5	$0.03 \ (0.01/0.00)$	$2.57 \ (0.76/0.28)$	5.90 (1.40/0.47)	3.0 - 5.0	0.0706	$0.34 \ (0.15/0.08)$

TABLE III: Lepton-jet tagging efficiency $\epsilon_{\rm LJ}$ (%) in $pp \to bW\bar{b}W + \ell^+\ell^-$ for signal (for given m_{H^\pm} and $m_{Z'}$) and background (from virtual photon and virtual Z boson) at the 8 and 14 TeV LHC. The numbers in parentheses ($\epsilon_{\rm (LJ+CMS[1b])}/\epsilon_{\rm (LJ+CMS[2b])}$) are the efficiencies when we require additional selection cuts, requiring one b-tagged or two b-tagged jets as described in Appendix A 2. Coupling structure of Z' to the lepton does not give a significant effect on the tagging efficiency. In the above table, we take axial coupling as an example. For backgrounds, we set the trigger of a $m_{\ell^+\ell^-}$ mass window as in the table to enlarge statistics.

Signal and Backgrounds

$oxedsymbol{m_{Z'}}$				
[GeV]	$100 \mathrm{GeV}$	$140~{\rm GeV}$	$160~{\rm GeV}$	BKG
1	40.0	86.2	58.1	69.6
2	8.2	59.9	47.8	5.0
5	0.1	5.0	9.1	0.3

TABLE I: Expected number of events in each lepton-jet bin (20% window of the Z' mass) with two b-tagging in 8 TeV LHC 20 fb⁻¹. We set X = 0.001 and BR($Z' \rightarrow \ell^- \ell^+$) = 0.2. Signal events were obtained with high order $\sigma_{t\bar{t}}$ with branching ratio, and the background events were obtained with tree-level simulation with $K_{\text{bkg}} = 2$.

- At 8 TeV, top pair production cross section ~239 pb.
- For mH+ = 140 GeV, MZd=2 GeV,

$$N_{\rm sig} = \sigma_{t\bar{t}} \, 2X \, \text{BR}(Z' \to \ell^+ \ell^-) \, \epsilon_{\rm sig} \, L \approx 60$$

$$N_{\rm bkg} = \sigma_{\rm bkg} \, \epsilon_{\rm bkg} \, L \approx 5$$

$$N_{\rm obs} = N_{\rm sig} + N_{\rm bkg}$$

$$S_{\rm cL} = \sqrt{2N_{\rm obs} \log (1 + N_{\rm sig}/N_{\rm bkg}) - 2N_{\rm sig}} \, \simeq 14.6$$

$m_{Z'}$	m_{H^\pm}				
[GeV]	100 GeV	$140~{\rm GeV}$	$160 \mathrm{GeV}$		
1	$7.8{\rm fb}^{-1}$		$3.4{\rm fb}^{-1}$		
2	$14.5 \mathrm{fb}^{-1}$	$0.7{\rm fb}^{-1}$	$1.0{\rm fb}^{-1}$		
5	_	$7.3 {\rm fb}^{-1}$	$3.5\mathrm{fb}^{-1}$		

TABLE II: Required luminosity for 14 TeV LHC to see the likelihood ratio $S_{\rm cL}=5$ (corresponding to 5σ discovery). Basically the same method as Table I is used.

- Conventional search gives Nsig~ 4
 with eff=0.71%, and signal is buried in
 background uncertainty, which is 591.
- $N_{
 m bkg} \simeq 1.7 \times 10^4$ results in ScL=0.03.
- Good sensitivity for LHC Run II.

Signal and Backgrounds

- At 8 TeV, top pair production cross section ~239 pb.
- For mH+ = 140 GeV, MZd=2 GeV,

$$N_{\rm sig} = \sigma_{t\bar{t}} 2X \, {\rm BR}(Z' \to \ell^+ \ell^-) \, \epsilon_{\rm sig} \, L \approx 60$$

$$N_{\rm bkg} = \sigma_{\rm bkg} \, \epsilon_{\rm bkg} \, L \approx 5$$

$$N_{\rm obs} = N_{\rm sig} + N_{\rm bkg}$$

$$S_{\rm cL} = \sqrt{2N_{\rm obs}\log\left(1 + N_{\rm sig}/N_{\rm bkg}\right) - 2N_{\rm sig}} \simeq 14.6$$

- Conventional search gives Nsig~ 4 with eff=0.71%, and signal is buried in background uncertainty, which is 591.
- $N_{
 m bkg} \simeq 1.7 \times 10^4$ results in ScL=0.03.
- Good sensitivity for LHC Run II.

Summary

- A light Zprime (Zd) is well motivated and its search is very active at low energy experimental facilities.
- It also provides interesting collider signatures.
- We considered the production of light Zd via charged Higgs with Zd decays to a collimated lepton pair, which may be missed by conventional searches.
- 8 TeV already rules out some parameter space.
- Exciting opportunity at LHC run II.